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CHAPTER IV

DEPOLARIZATION ON EARTH-SPACE PATHS

4.1 INTRODUCTION

By using orthogonal polarizations, two independent information

channels occupying the same RF frequency band can be transmitted

over a singie link. This technique is used in satellite

communications systems to effectively increase the available

spectrum. While the orthogonally-polarized-channels are completely

isolated in theory, some degree of interference between them is

inevitable, owing to less-than-theoretical performance of spacecraft

and Earth station antennas, and depolarizing effects on the

propagation path. The main sources of this depolarization at

millimeter wave frequencies are hydrometer absorption and

scattering in the troposphere.

4.1.1 Definition of Terms

Frequency reuse satellite communications systems utilize either

orthogonal linear or circular polarization states. The orthogonal

linear polarization (LP) states are normally referred to as vertical

and horizontal, but except for Earth stations at the satellite’s

longitude, the polarization directions are rotated somewhat from the

local vertical and horizontal references. The orthogonal circular

states are left-hand and right-hand circular polarization (LHCP,

RHCP), differing in the sense of rotation of the electric field

vector. The “handedness” is defined as follows: a wave is RHCP if

the sense of rotation of the field corresponds to the natural curl
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of the fingers of the right hand when the right thumb is pointed

along the propagation direction. Likewise for LHCP. Thus a RHCP

wave coming out of the paper would have an electric field rotating

counterclockwise.

A measure of the degree of interference between the two

orthogonally-polarized channels is the crosspolarization

discrimination (denoted XPD), defined as follows: Let Eij be the

magnitude of the electric field at the receiver that is transmitted

in polarization state i and received in the orthogonal polarization

state j (i,j=l,2). Ell and Ez2 denote the copolarized  waves E12 and

E21 refer to the crosspolarized waves. This is “illustrated in

Figure 4.1-1. XPD is the ratio (in dB) of the power in the

copolarized wave to the power in the crosspolarized wave that was

transmitted in the same polarization state.

EllXPD = 20 log —
%2

(4.1-1) ‘“-

If state “l” is RHCP and “2” is LHCP, for example, then the XPD is

the ratio of the RHCP power to the LHCP power, given that only a

RHCP wave was transmitted.

A closely related measure is the crosspolarization isolation— — .
(XPI), which compares the copolarized received power with the ‘–

crosspolarized  power that is received in the same polarization

state:

%1XPI =  2olog—
E21 (4.1-2)

?

Again letting the states “l” and “2” refer to RHCP and LHCP, the XPI

compares the power in the RHCP received wave that was transmitted as

RHCP to the power that was transmitted as LHCP. XPI is the
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parameter that is most meaningful to system engineers, since it

directly gives the carrier-to-interference ratio in a received

channel. However, XPD is the parameter that is most easily

measured. It has been shown (Watson and Arbabi-1973) that XPI and

XPD are the same if the hydrometers responsible for the

depolarization have certain symmetry properties. The geometric

models that have been used for raindrops and ice crystals have the

necessary symmetry, so XPI = XPD in theory. In practice, it has

been found that there is not a significant difference between XPI

and XPD.

Another term used to describe depolarization, cross polarization

ratio (CPR), is the reciprocal of XPD. Other parameters in use,

e.g.~ crosstalk discrimination? crosspolarization distortion~

depolarization ratio, crosspolarization level, usually reduce to XPD

or XPI.

In the discussion that follows, it is often important to

distinguish between polarization properties of a wave in space, and

the parameters that we actually measure at the output of the

receiver. We shall use XPD to describe the wave properties and a

different term, Isolation (I) (after Stutzman-1977) to describe the

receiver output. In general,

I = copolarized channel output power
crosspolarlzed channel output power

Isolation takes into account the performance of the receiver

antenna, feed, and other components as well as the propagating

“medium. When this performance is close to ideal, and/or the XPD of

the wave is low (i.e. severe depolarization)? then I=XPD. This will

be discussed in more detail later.

4.1.2 Hydrometer Sources of Depolarization

The major sources of depolarization on Earth-spa.e paths are

hydrometers, ionospheric Faraday rotation~ and multipath. The
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predominant source at millimeter wave frequencies is hydrometers,

and rain is the hydrometer species that has the greatest effect.”

4.1.2.1 Rain. To determine the attenuation due to rain, the

raindrops are modelled as spheres of water suspended in space. Real

raindrops are falling at their terminal velocity and, due to the

complex aerodynamic and hydrostatic forces acting on them, they are

in general not spherical. The very small drops ( 20.03 cm in

diameter) are very nearly spherical, drops in the range of about

0.03 to 0.10 cm in diameter can be considered oblate spheroids, and

drops with diameters larger than about 0.10 cm are asymmetric blobs. .
with flat or concave bottoms (Pruppacher and Pitter-1971).

Depolarization occurs because of this lack of spherical symmetry,

along with the tendency for the drops to have a preferred

orientation (i.e., top and bottom flattened). The effects of the

rain-filled medium on a wave propagating through it are dependent on

the orientation of the electric field vector with respect to the

preferred drop orientation.

It is easy to picture the effect of the “flattened” raindrops on

linearly polarized (LP) waves propagating horizontally: The fields

of horizontal LP waves encounter more water, on the average, than do. .
vertical LP wave fields, and so are subjected to more attenuation

and phase shift. An LP wave at some arbitrary orientation, say 45°

from the vertical, can be resolved into an equivalent set of

component waves having horizontal and vertical polarization. After

passing through the rain, the horizontal component has suffered a

greater decreased in amplitude, so the polarization direction has

been shifted toward the vertical. In addition, the differential

phase shift between the components has caused the wave to become

slightly elliptically polarized. These depolarizing effects of rain

are described more rigorously later.

4.1.2.2 Ice Crystals. Most of the depolarizing effect of rain is

produced by differential attenuation. Therefore rain depolarization

and attenuation are fairly well correlated. Starting in 1975, when

ATS-6 propagation experiments were well underway in Europe,
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researchers were surprised to see occasions of severe depolarization

that were completely uncorrelated with rain attenuation. The cause

of this “anomalous” depolarization has since been identified as

oriented ice crystals. Ice can occur at altitudes above the

freezing level in cirrus clouds and at the tops of cumulonimbus

clouds. When something causes the ice crystal symmetry axes to

align themselves~ it brings o n  a  p o l a r i z a t i o n - s e l e c t i v e  p h a s e

effect. We are now fairly certain that the electrostatic fields

associated with electrically-active storms are at least one aligning

force. This is consistent with the observed abrupt changes in XPD

coincident with lightning flashes.

Ice depolarization has been theoretically modelled in a manner

analogous to rain depolarization. For that purpose, the ice

crystals are assumed to be either oblate or prolate ellipsoids,

corresponding respectively to “plates” and “needles~” which are two

distinct types of crystals that are known to exist in clouds. The

model is in good agreement with observations and explains the rapid

changes in the phase of the crosspolarized waves that accompany

lightning flashes.

4.1.2.3 Snow, Graupel and Hail. The anisotropy that is responsible

for depolarization by rain and high-altitude ice crystals apparently

also exists in snow. From S-band and Ku-band radar measurements,

Hendry, et. al. (1976) have observed significant differential phase

shifts between the right-and left-hand CP radar returns in moderate

to heavy snow. The differential phase shift along the propagation
0 and 1.17° per km at 16.5path was found to vary between 0.16

values comparable to that of moderate rainfall. Unlike rain,

however, snow produces very little differential attenuation.

differential phase shift in snow should produce measurable

depolarization on Earth-space paths, but little or no direct

experimental evidence of this has been reported.

GHz ,

The

Graupel, or snow pellets, may also exhibit some anisotrcq?y!  and

resulting depolarization. Hail particles, which have a rough
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spherical symmetry~ probably would not cause depolarization.

(McCormick and Hendry-1977).

4.2 MATHEMATICAL FORMULATIONS FOR DEPOLARIZATION

This section presents the mathematical background required to

discuss the effects of the propagation medium characteristics and

antenna performance on signals in dual polarization Earth-space

links. It should enable the system designer to properly interpret

experimental data and assess system performance? considering both

the medium’s depolarizing effects on the wave and the wave’s

interaction with the antenna system. Most of this development is

from Stutzman (1977).

4.2.1 Specifying the Polarization State of a Wave

In the most general case, the tip of the electric field vector

of a plane electromagnetic wave traces out an ellipse in the plane

perpendicular to the direction of propagation. The polarization

state of the wave is given by specifying the shape and orientation

of the ellipse, along with the sense of rotation of the field

vector. Figure 4.2-1 shows the general polarization ellipse and

defines the notation. The electric field vector ~(t) is the

resultant of sinusoidal components &x(t) and CY(t) which have

different amplitudes El and Ez and a phase difference 6:

A= xE1cosut + ;E2cos(o.M  + d) (4.2-1)

where ! and ~ are unit vectors in the x and y directions~

respectively, w is the radian frequency~  and t is time. The

polarization ellipse is fully described by the angle, T , between

the ellipse major axis and the x-axis, and the ratio of the major

and minor axes of the ellipse. This ratio is the magnitude of an

important parameter known as the axial ratio~ and is the ratio of
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the maximum to the minimum magnitude of the electric field vector.

The axial ratio’s sign is assigned to be positive if the vector

rotation has a left-hand sense and negative for rotation with a

right-hand sense: (See Figure 4.2-2.) Linearly polarized waves have

an infinite axial ratio; circularly polarized waves have an axial

ratio r = -tt, corresponding  to LJ3CP and RHCP respectively,

It is convenient to define another parameter

c = cot-l r ;-450 s c s 45° (4.2-2)

The specifying parameters s and T are related to the quantities used
to describe the fields earlier by

where

E = ~ sin-’ (sin2y sird)

T =~tan-’ (tan2ycosd)

Y =  tan-l
maxy-componentof  F

A
maxx-componentof ~

=  tan-l (E2/E1)

(4 .2-3)

(4 .2-4)

(4 .2-5)

There are other methods used to specify polarization state

(Stutzman-1977) . The Stokes parameter representation is a matrix

formulation. The Poincare sphere is a mapping of polarization

states into points on a unit sphere. The complex polarization

factor is a single number specifying polarization state. All these

various representations are directly relatable to the angles c and T,

or 5 and Y.

4.2.2 Wave-Antenna Interaction
\

The power available (PR) at the output of an antenna illuminated

by a uniformly polarized incident plane wave of flux density S is

4-8
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Figure 4.2-1. Polarization Ellipse
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Figure 4.2-2. Definition of Sign of Axial Radio, r
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PR ‘ S A~mP (4.2-6)

where Ae is the effective aperture of the antenna in the direction of

the incident wave, and mP is the polarization mismatch factor. This

factor is a real number between zero and one that depends on the

degree of match of the polarization state of the wave and the

antenna. The polarization state of a receiving antenna is defined

as the state of the wave that the same antenna would transmit, but

with time reversed. (A time-reversal changes the direction of

propagation of a wave but retains the sense of rotation and axial

ratio. ) A RHCP incident wave, for example, is perfectly matched to

a RHCP antenna. This means the antenna absorbs the maximum amount

of power from the wave, and mp = 1. A RHCP antenna absorbs no power

from a LHCP wave, and mp = O. The general expression mp ~ assuming

arbitrary elliptical polarization states of both the antenna and the

wave, is

1 4rWra + (rW2-  l)(ra2- 1 ) cos 2( Ta-Tw)
mP(w,a)  =~+

2(rW2+ l)(ra2+  1) ( 4 . 2 - 7 )

where ra = axial ratio of antenna

r w = axial ratio of wave

Ta = major axis angle of antenna

TV = major axis angle of wave

We consider some examples to confirm that (4.2-7) is plausible:

Antenna RHCP, Wave LHCP

ra = -1, rW = +1

mp = 1/2 + 4(1)( -1) + (1-1) (1-1~ =1/2-1/2=0
2(1+1)(1+1)

Antenna LP, Wave CP
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ra= CO? rw=l

By dividing the numerator and denominator of the second

(4.2-7) by rza, then taking the limit as r +00, we find

which is intuitively agreeable.

Antenna LP, Wave LP

9

term of

that mP= 1/2,

. .

,,. \

. .

Here we divide the numerator and denominator by rzarzw and pass to

the limit, giving

mP = 1/2 + 1/2 C O S  2(Ta - T“) = COS2(t~  - Tv) (4.2-8)

This equals one when the orientation of the linear polarization axes

of the antenna and wave are aligned (ta - ZW), and equals zero when

the axes are orthogonal (ta-~w=i900)

Antenna LP, Wave Elliptically Polarized

ra =al r w= r

Dividing through by r~ and taking the limit as before~ we obtain

=  1 / 2 +
l/2(r2-l)COSz(Ta-Tw)

‘ P 2(r2+ 1)
( 4 - 2 . 9 )

Figure 4.2-3 is a polar plot of mp versus the angle difference ~a-~wr

for r=l.5 and 2.

Letting

(mp)max = mP f o r  ta = tw (aligned)

(mp)min = m p f o r  ta = TW + 90° (orthogonal)

4 - 1 1
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Figure 4.2-3. .Polarization Mismatch Factor mP for LP ~
Antenna and Elliptically Polarized Waves



Some algebra yields

[1(mP)maX  %
r = —.

(mP)~in (4.2-10)

This is confirmed in Figure 4.2-3.

This formula suggests a technique for measuring the axial ratio

and principal axis orientation of a received wave: The power

received by

measured as

the maximum

antenna, is

orientation

orientation

a linearly polarized antenna (e.g., a dipole) is

the antenna axis is rotated through 180°. The ratio of

to the minimum received power, assuming a perfect

then the square of the axial ratio of the wave, and the

of the wave’s principal axis is just the antenna’s

when maximum power is measured.

4.2.3 Cross Polarization Discrimination (XPD)

Having defined the polarization mismatch factor, we now present

a more useful definition of XPD than that given earlier. Orthogonal

polarization states are defined, in general, to have axial ratios

that are equal in magnitude and opposite in sign (i.e., opposite in

rotation sense), and have polarization ellipses with spatially
orthogonal axes. Vertical/horizontal LP, and RHCP/LHCP are common

examples of orthogonal states. The polarization mismatch factor for

a wave with a given polarization state incident on an antenna that

is matched to the orthogonal state is zero.

It is always possible to decompose a wave into two components

with orthogonal polarization states. An arbitrary wave can be

considered as being composed of a component with a polarization

state matching the antenna, and a second component with the

orthogonal state. The antenna extracts maximum power from the

matched component~ but completely rejects the orthogonal component.

The polarization mismatch factor is then seen to be the proportion
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of the total flux density impinging on the antenna that is being

carried by the polarization-matched wave component. Denoting the

received wave’s polarization state by the index w’, and the

antenna’s polarization state by w, the antenna output power is

P = SAemP(w’ ,w) (4.2-11)

A second antenna with equal effective aperture Ae but with a

polarization state WO, that is exactly orthogonal to w, gives an

output power

PO = SAemP(w’/wo)

The Q is the ratio of the orthogonal

(4.2-12)

components of the wave,

XPD = 10log [mP(w’,w)/mP(w’,wo)l (4.2-13)

assuming that the “w” polarization state is the one the system is

designed to maximize, or the copolarized  state. The “wO” state is

designated as crosspolarized.

Suppose a LP wave is received, and the copolarized state (w) is

designated as horizonally polarized. Let

received wave with respect to horizonal.

mP(w’,w) = COS2T

mP(w’,wO) = sin%

t = Twt = the angle of the

For this case,

( 4 . 2 - 1 4 )

(4.2-15)

XPD = 10 log (cotZT) ( 4 . 2 - 1 6 )

Assume an elliptically polarized wave is received with axial

ratio rw’= r, and copolar is designated as LHCP.

rw
= +1, rWO = -1

(r+l)2
mp(w’,w)  =  (1/2) ~

For this case,

( 4 . 2 - 1 7 )

( 4 . 2 - 1 8 )

-,

4 - 1 4
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!r-1)2
mp (W’,W,o) =  (1/2) ~ ( 4 . 2 - 1 9 )

XPD = 20 log [(r + 1)/(r-1)] ( 4 . 2 - 2 0 )

XPD is plotted versus r for the elliptically polarized case in

Figure 4.2-4. An alternate “axial ratio,” ndB, is shown in the

figure. This is commonly used and is related to r by

ARdB = 20 log Irl ( 4 . 2 - 2 1 )

In terms of this parameter, XPD is closely approximated by

X P D  S= 24.8 - 20 log (ARdB) , for ARdB < 10 dB (4 2-22)

4.2.4 Effect of Non-Ideal Antenna Performance

The XPD describes the polarization characteristics of a received

wave with respect to some “copolarized” reference. The true XPD

could be measured with an ideal antenna, capable of being matched

exactly to the co- and cross polarized state. Actual antennas are

not ideal. They can be built with outputs that closely approximate

the copolarized and crosspolarized components of the wave, but some

degree of degradation is always present in their performance. Here

we present a method of quantifying the polarization performance of

the antenna and taking this performance into account in interpreting

polarization measurements.

From this point on, the receive antenna polarization states that

are close to the true co- and crosspolarized wave states will be

distinguished from the true states by putting their names within

quotation marks.

4 - 1 5
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Isolation, I, is defined as the ratio of the output power

available at the antenna’s “copolarized” port (Pc) to the output

power at the “crosspolarized” port (Px). The polarization states

coupled to the “copolarized” and “crosspolarized” ports are a= and

ax, respectively. Since the antenna is non-ideal, ac and ax are not

necessarily orthogonal, and ac does not necessarily correspond to the

pure copolarized state. Denoting the state of the received wave as

w’ and the wave’s power flux density as SW’, we have from (4.2-11):

I=

It is useful to

is measurable. The

port can be written

crosspolarized wave

P=

P SW,A,mP(w’,aC)
10 log.#  =

1 0’ 0 9  SW,AemP(w’taX~x

( 4 . 2 - 2 3 )
m (w’,ac)

10 log
mD(w’, ax)

be capable of finding XPD in terms of I, which

power available at the “copolarized”  antenna

in terms of the true copolarized  and

components, w and

= & [Swmp(w~ac)  +

Wo .

Swomp(wo,ac)l ( 4 . 2 - 2 4 )

Likewise for the “crosspolarized”  power

P~ =  Ae [Sdnp(w,ax) +  %o~p(wo~ax)] ( 4 . 2 - 2 5 )

Sw and Swo are the power flux density in the true copolarized and

crosspolarized states, respectively. Now we have

SWrnP{w,aCl + SWOmP(Wo,Q
I = 10 log

SWmP(w,ax)  + SWOmP(wO,ax)

4 -17
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(xpd)mp(w,ac) +  mp(wo,ac) ( 4 . 2 - 2 6 )
= 10 log

(xpd)mP(w,aX  ) + mP(wO,aX)

where xpd = SW/SWO = log ‘1 (XPD/10 )

Since the “copolarized” state of the antenna is assumed to be well-

matched to the true copolarized wave component,

mP(wO,ac) << mP(w,aC)

So this term is negligible and

I = Iolog
mp(w,ac)

mp(w,aX)  + mP(wo,aX)/(xPd)

Note that when the antenna is nearly ideal,

mp(w,ac) = 1, mP(wO,aX) = 1, mP(w,aX) = O

and so I = XPD. On the other hand, when the XPD is very high,

I = 10 log [mP(w,ac)/mp(wfaX)l

( 4 . 2 - 2 7 )

which is a function of the antenna

antenna can be used to measure XPD

certain maximum XPD value which is

performance parameters.

only. This implies that a given

to a given accuracy up to a

determined by the antenna

For the CP case, the equation for I becomes

1
—+ ‘c
2 ~c2 + 1

1 = lo log
Y“(xpd-l+l)  + &l (xpd-’-l)

x

( 4 . 2 - 2 9 )

4 - 1 8



where r= and rX are the axial ratios of the antenna’s “copolarized”

and “crosspolarized” states~ respectively. Figure 4.2-5 shows I

versus XPD for various values of axial ratio ARdB. The “copolarized”

and “crosspolarized” axial ratios are made equal in the figures? but

I is-actually nearly independent of rx. The figure gives the amount

of error to be expected when measuring XPD.

For the LP case, we obtain

. .
1 + 0CCOS2TC

I = lolog
(l+xpd-l) - (l-xpd-l)QXcos 2(7X-90”)

( 4 . 2 - 3 0 )

(rC2X-1)/(rc.X+ 1)where QC,X = ,

~c,x = antenna “copolarized”  I
“crosspolarized” axis orientation angle

rc, x = antenna “copolarized”  ~
“crosspolarized”  axial ratio

The copolarized wave axis is taken as the reference for the antenna

axis orientation angles. Figures 4.2-6 and 4.2-7 show I versus XPD

for various antenna axial ratios and axis misalignment angles. The

first figure is for perfect axis alignment and varying axial ratio.

As with the CP case, equal axial ratios for the “copolarized” and

“crosspolarized” states were assumed, but isolation is practically

independent of the “copolarized” axial ratio, rc~ when it is large

(>20dB). Figure 4.2-7 shows the effect of axis misalignment for the

ARdB=30dB CaSe. The antenna axes are assumed orthogonal, with TX = TC

-90°, but the isolation is not strongly dependent on ZC for Zc < 10°.

4 - 1 9
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4.3 RAIN DEPOLARIZATION

4.3.1 Theory of Rain Depolarization

Rain depolarization can be xnodelled  using the same techniques

applied to rain attenuation. The essential difference is that in

examining depolarization~ the raindrops are assumed to be oblate

spheroids. The attenuation analysis assumed that the raindrops were

spherical. Figure 4.3-1 shows the geometry for a dual LP wave

incident on an oblate spheroidal raindrop. The raindrop is at an

arbitrary orientation with respect to the direction of propagation

of the wave. The orientation is specified by the angle q, between. .
the propagation vector and the raindrop’s symmetry axis. The plane

containing a will be referred to as the plane of incidence.

EX and EY are electric field vectors of two orthogonal LP waves.

They are in a plane normal to the propagation vector~ and each one

can be resolved into two components: a component in the plane of
incidence, and a component normal to it. Parallel to these

components, we define two symmetry axes~ labeled I and II in the

figure. The projection of the raindrop into the plane containing

the electric field vectors is an ellipse, and axes I and II are its

minor and major axes~ respectively. Figure 4.3-2 shows this ellipse

and how the electric fields are resolved into their “I” and “II”

components.

The total electric field magnitudes in the I and II directions

(EI and EII) are given by

[1[
1

El = Cos e -sin 0

%1 sin 6 Cos e

where 0, the canting angle~ is the

[1 HEX REX

Ey = Ey ( 4 . 3 - 1 )

angle between the x and I axes.

Now consider a region of space containing many identical

raindrops with the same orientation distributed throughout it.

According to scattering theory, the effect of many scatterers along

4 - 2 3



AXIS OF
SYMMETRY
OF DROP

DIRECTION
OF

..::: :::. ..:O . . . . . . . . . . . . .
. ::::::::: : : :.......” .: ::::”

. . . . . . ...””” . . . . ...”””.” . . . ...”””. . . . . . ...””” . . . . ...””””. . . . . . .
. . ...”

.-$. OO. O... . . . . . . ...””” ““”’

II
. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . ...””””

:;”””  O F

Figure 4.3-1. Geometry for Rain Depolarization Analysis

I

PROJECTION
OFRAINDROP
ONTO PLANE
CONTAIN~G

I \ Y
< AND EY

Figure 4.3-2. Resolution of Electric Fields into I and II
Components

4-24

-.



B

.-

the propagation path of a wave is to multiply the electric field

vector by a transmission coefficient of the form

T = exp[-(a-j$)L] (4.3-2)

where L is the path length through the scattering region. The a

term of the exponent produces attenuation of the wave, and ~

produces a phase lag. This phase lag is in addition to the normal

free-space phase retardation of the fields. Instead of a and ~ ,

which have units of nepers per unit length and radians per unit

length, respectively, the more useful parameters, A and ~, are

normally used:

A = specific attenuation of power flux density of wave? in

dB/km.

= 20(log10e)a  = 8.686 a

~ = specific phase lag of wave, in degrees/km.

= (180/n) $

A region filled with oblate spheriodal raindrops must be

characterized by two transmission coefficients: TII applied to the

“I” component of the electric field, and T1l, applied to the “II”

component. Denoting the fields of the wave incident on the

scattering region by a subscript i~ and the fields of the wave

exiting the region by s (for scattered)~ we can write

[HEls =Tl o
E ,,s O T,, H [1Eli Eli

= T
‘Iii ‘Iii

( 4 . 3 - 3 )

Now the coordinate rotation R, defined above, can be applied to get
an equation for the effect of the scattering region on the field

vectors in the x and y directions.

4 - 2 5



[1 [:EXs EXi=R-l TR
Eys E.yl [1E.

= T’ “
E.yl (4.3-4)

Figure 4.3-3 shows how the three component transformations are

successively applied to produce T’ . The overall transformation
matrix T’ can be evaluated to yield

T’ = ‘1txx txy

1 tyx tw

txx =  T, cos20 + Tll sin%

tw = Tlsin26+ Tjl COS2fJ

tXy=$x= ~(T1l-Tl)  sin20

( 4 . 3 - 5 )

Chu (1974) gives expressions for these parameters in terms of the As

and as.

Calling the LP wave polarized in the x direction the copolarized

wave, we can now obtain expressions for the XPD:

IEXS12
XPDX =  Iologw with Eyi = O

Itxxlz
=  lolog —

Ityxlz

where

1 + Ytanze
=  2olog—

(y-l) tanO

(4.3-6)

Y =  T1l/Tl =  expl-(all-al)L  + j($ll-+l)Ll

4 -26
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Or, calling the y- direction the copolarized state,

IE J*
XPDY = lolog ~2

lEX~
withEXi  = O

Ityylz
= lolog —

Itxylz

= 2olog
y + tan26

(y-1) tan6’

For the case of circular polarization, Chu (1974) shows

( 4 . 3 - 7 )

(4.3-8)
y+l

XPDC = 10 log (Itxxhyxlz)e=dso  =  2 0 1 0 9  —
y-1

which is independent of the sense of rotation of the copolarized

1 w a v e .

Thus far, we have assumed that all raindrops are of equal size

and have the same orientation. The model must account for the

distribution of sizes and shapes of raindrops and the distribution

of angles 6 and a that are present in the rain along the path.

Scattering theory allows for this. The scattering effect of a

single raindrop is determined as a function of some parameter (like

size), then the distribution of that parameter over the population

of raindrops is used in calculating the transmission coefficients.

The transmission coefficients (more exactly, the specific

attenuations and phase lags, A and @) have been calculated in this

manner as a function of rain rate by several authors. The first

calculations (Chu-1974,” Watson and Arbabi-1973a) used oblate -

spheroidal raindrops. The drops were assumed to be distributed

.
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be distributed according to the well-known Laws and Parsons

distribution, and to have eccentricities that were directly related

to their sizes, with the largest drops being the most deformed.

Later work has considered the more realistic Pruppacher-Pitter

(1971) drop shapes (Oguchi-1977).  Figure 4.3-4 (from Morrison, et
al -1973) is an example of the results of these calculations. These
curves give the difference in the specific attenuation and phase

between the I and II axes. The angle between the direction of

propagation and the raindrop symmetry axis, a , is a parameter, and

the canting angle, 6, is set to 25°. The differential attenuation
-.

and phase are of most interest because they actually determine XPD.

As can be seen from the curves, the worst case for differential

attenuation and phase corresponds to a = 90°. This agrees with
intuition, since the projection ellipse of the drop onto the plane

containing the field vectors has the greatest eccentricity for that

case. For values of a different from 90°, Chu (1974) shows that the
following approximation is quite accurate:.

All-Al = sin20 (AII-AI)O=WO

(4.3-9)

0111-01 =  sin20 (O1l-OI)O=WO

Accounting for the distribution of a and (3 is more difficult

than doing so for drop size and shape. We have little information
about the distribution of the orientation of raindrops. It is
expected that wind and wind gusts produce an appreciable spatial

correlation in the orientation. In the absence of wind, a fairly

symmetric distribution about the vertical would be expected.

The a component of drop orientation is usually considered to be

equal to a constant 90° for line-of-sight (horizontal) paths and the

complement of the elevation angle for satellite (oblique) paths.

The effect of a’on XPD is apparently so small compared with the

canting angle dependence that allowing for a distribution of ais

not worthwhile.
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The canting angle distribution, as it affects XPD, has been

studied extensively. Thomas (1971) presents an experimentally

determined canting angle distribution and derives an “average” angle

of 15°. He further notes that the crosspolarizing effects of canting

angles of positive and negative sense tend to cancel, so the overall

effect is proportional to the excess of one sense over the other.

Based on some experimental evidence, he chooses 25% as the worst

case imbalance of canting angle sense. The predicted worst case

XPD, then, is roughly that produced by 25% of the raindrops at a lSO

canting angle. Chu (1974) uses similar reasoning, but gives

evidence that the mean canting angle is about 25°, and that the

effective angle sense imbalance is about 14%. Watson and Arbabi
(1973b) calculate XPD versus rain rate at 11 GHz assuming a Gaussian

canting angle distribution with a non-zero mean value, and

uncorrelated drop orientations. The results were nearly the same as

those assuming a fixed canting angle equal to the mean value.

Distributions of both a and e can be accounted for by the

following transformation ‘Oguchi-1977).  :

1 + moms I-mema

1 -mOmO 1 + mOmO

alr.j+(

311’-j$ll’
4 . 3 - 1 0 )

where the unprimed a’s and a’s are effective attenuation and phase

constants and the primed ones correspond to a=90°. The canting

angles and incidence angles are assumed to be randomly distributed

with means 6 and a variances 882 and &a . The transformation

parameters, assuming Gaussian distributions, are

me = exp (-2&12)

m. = exp (-200

2)

mO = ~ [1 + exp

4-31
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where aO and aa are in radianse The effective canting angle used in

the formulas for XPD~ etc. is 6. Substituting the effective

attenuation and phase constants a, @into the formula for XPD (4.3-

6), making the small argument approximation

Y = exp [-(all’-al’)L + j(Y1l-~l’)Ll

= 1 -(al/-aoL + j($l{-$l)L
(4.3-12)

and making further approximations based on the known values of the

a’s and ($)’s, we arrive at

XPD z -20 log
{

1~memOL[(Aa’)2 + ($ ’)2J% sin28
{

( 4 . 3 . 1 3 )

where’

Aa’ = all’-al’ .

This is good approximation for frequencies in the 4-50 GHz range and

rain rates less then 150 mm/hr. If, in addition, we neglect the

effect of the distribution of a and assume that the drops are

oriented horizontally in the plane of incidence~ as do Nowland~

et.al. (1979)J we can write

where & is the antenna elevation angle. This implies

ma= cos2&

( 4 . 3 - 1 4 )

-,

( 4 . 3 - 1 5 )

which further simplifies the approximation for XPD. The result is

4 - 3 2
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XPD = -20 log

with

~meLIAk’ COS2E  sin 2~
116

Idk’j = l(Aa’)2 + (A$’)2J72

( 4 . 3 - 1 6 )

4.3.2 Relationship between Depolarization and Attenuation due to

Rain

-.
An empirical relation has been observed between the exceedance

statistics for attenuation and those for XPD on the same path. The

relation is

XPD =%- ~log(CPA) ( 4 . 3 - 1 7 )

. . where XPD is the value of cross-polarization discrimination not

exceeded for a given percentage of the time, and CPA is the

~opolarized attenuation value in decibels, exceeded for the same

percentage of the time. The empirical constant 5 is typically found

to be in the 30-50 dB range and k is usually around 20. We present

below the theoretical basis supporting this relation, and examine

some of the experimental evidence for it.

Referring back to Section 4.3.1, we can obtain an expression for

attenuation of the copolarized wave in a manner similar to finding

the XPD. The copolarized attenuation, assuming a LP incident wave

oriented in the x-direction, is given by

CPA =
IEXJ2

- lo log —
IEJ2

with EYi = O

= -lo log Itxxp

= -20 log ITI COS28 + T,, sin261

= -20 log ITI[l + (e-(h-JAt]- 1 ) sin20]
( 4 . 3 - 1 8 )
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where Aa and AQ are defined under equation (4.3-13). Using the

small argument approximation (4.3-12) we can obtain

CPA, z -20 log [exp(-alL cos2(l  -allL sin%)]

= (AICOS20 + Allsin28)L

( 4 . 3 - 1 9 )

The same expression, with 1 and II subscripts interchanged, is found

for CPAY . Note that the above expression applies only when all the

raindrops have the same orientation. Averaging over distributions

of orientation angles a and 6, as was done earlier to find the XPD,

we obtain

( 4 . 3 - 2 0 )

.-

where AI’ and AII’ are the attenuation coefficients, in dB/km~ for a
= 90°. Again assuming as before, that the raindrops are not

distributed in a, and that a = 90°-8,

CPA, =~[(A( + A,{) + m& A/-Al~) cos2& cos 2~lL ( 4 . 3 - 2 1 )

CPAY is the same except that the sign of the second term is minus.

To relate XPD and CPA, we assume that the CPA, the attenuation

coefficients AX and AIIt the magnitude of the differential

propagation constant, and the effective path length all bear a power

law relation to the effective rain rate, R (Nowland, et al-1977):

4 - 3 4
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CPA = aO RbO L ( 4 . 3 - 2 2 a )

.

AI, = al Rb]

AII, = az Rb2

L = u

Ihkl =

Substituting (4.3-22a-c) into

for a. and b. in terms of al,

4 ● 3-22 b’)

4.3-22c)

4.3-22d)

c Rd
(4.3-22e) ,

(4.3-21) gives approximate expressions

az, bl and bz, which can be determined
by regression fitting to the calculated propagation constants. The
parameters u, v, c and d can also be determined by regression

fitting to theoretical or empirical relations.

Substituting (4.3-22d) and (4.3-22e) into the formula for XPD,

(4.3-16), gives XPD in terms of R and regression parameters.

Likewise, using (4.3-22d) in (4.3-22a) gives CPA in terms of R and

regression parameters. Elmininating R then relates XPD and CPA:

XPD E % - ~ log CPA ( 4 . 3 - 2 3 )

with

%=20
( )
* log(aOu) - 20 log(~ c u me cos2F sin2F)

o

( 4 . 3 - 2 4 )

In the 11-14 GHz range, bO = d, which simplifies the formulas:

( 4 . 3 - 2 5 )

Throughout the preceding development, linear polarization in the

x direction was assumed. For LP waves in the y- direction, the 1

4 - 3 5



and 2 subscripts in the formulas for aO and bO are reversed. For CP

waves, 8 is set to 45°# which gives the lowest value of XPD.

The CCIR developed a provisional formula based on the above

analysis, which provided a simplified form to allow for the

prediction of XPD for a given percentage of the time. The CCIR

formula was first presented in CCIR Report 564-1, (CCIR-1978)~ and

later updated and modified in Report 564-3, (CCIR-1986). The CCIR

formula essentially sets

d bOg

~ = [f(GHz)l-3’2
o

( 4 . 3 - 2 6 )

8T= = polarization tilt angle with respect to horizontal

to arrive at the “CCIR Approximation”

XPD = 30 log[f(GHz)] - 40 log(cos c)-10 log[l-.484(l + cOs (4T))1

- 20 log (CPA) + .0052u 2

+
( 4 . 3 - 2 7 )

where u@ is the effective standard deviation of the raindrop canting

angle distribution, expressed in degrees. [The CCIR prediction

procedure is described in detail in Chapter VI, prediction

Techniques. ]

The “exact” evaluation of the a and b coefficients requires

first finding al, bl, az, bz, c and d by regression fitting to the

parameters AI, AI1, and Ak versus rain rate and frequency. These

parameters in turn are determined by the propagation constants -(al?

4 I f etc.) corresponding to the raindrop symmetry axes. Nowland, et
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al (1977) report the results of regression calculations performed in

this manner for oblate spheroidal and Pruppacher-Pitter-form

raindrops, for the Laws-and Parsons drop size distribution. More

extensive results are included in CCIR Document 5/206 (1977)/ a
Canadian submission to the Study Group 5 Final Meeting. That report

also contains the regression coefficients for path length, u and v.

These are given as functions of elevation angle for three ranges of

rain rate, and were computed based on an empirical formula for path

length.

. . The orientation distribution of the raindrops is the rain

characteristic about which we know the least. It enters into the

computation in finding a. and b. from al, az, bl and bz~ and in

finding ~. As stated earlier, it is apparently quite safe to ignore

the effect of the angular distribution in the plane of incidence

(see Figure 4.3-l). This allows us to set a = 900-& , the complement

of the elevation angle of the path. The drop orientation angle 0

with respect to the polarization direction, measured in the plane

normal to the path, can be expressed as the difference 6 = O-t where

@ is the drop canting angle and T is the polarization direction~

both measured with respect to the horizontal. Since T is known, it

is the statistics of 0 that determines 6 and 00 (or me )~ i.e.

G=; - T, Ue = Ofjj ( 4 . 3 - 2 8 )

It is convenient

canting angle @e

to describe the distribution of P by an equivalent

f defined by

sin 21~e- TI = m~in 21~ -71 ( 4 . 3 - 2 9 )

The equivalent canting angle is the canting angle that identically

oriented raindrops would need to have in order to produce the same

XPD . Nowland, et al (1977) cite a measured value of 4° for @e that

is consistent with independently-determined values of @and U9 , but

give other experimental results that show little consistency. QMore

work is clearly needed in characterizing the canting angle.
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Chu (1980) employed a “two-tiered” Gaussian model for the

canting angle. It assumes first that the instantaneous canting

angle has a Gaussian distribution with mean @m and standard

deviation SO. Second, the mean angle Ornf which varies with timer is

itself assumed to be Gaussian. The distribution ofQmhas zero mean

and standard deviation Sm . The values of these parameters that

apparently give the best agreement with experimental data are S@ =

30° and Sm = 3°.

Based on this two-tiered model, Chu (1982) derived a semi-
empirical formula for depolarization versus attenuation that agrees

with experimental results over a wide range of frequency~

polarization tilt angle and elevation angle. Cross-polarization

discrimination for circular polarization XPDC , in decibels, is given

by

XPDC = 11.5 + 20 log f - 20 log (CPA)
.

-40 log (coSE) (4.3-30)

where f is frequency in gigahertz, CPA is copolar attenuation in

decibels, and c is elevation angle. The formula for cross-

polarization discrimination with linear polarization, XPDL , in

decibels, is

XPDL = 11.5 + 20 log f - 20 log (CPA)

- 40 log (Cost)

- 10 log 1 / 2  (1 - 0.978 cos 4T)

- 0.075 (CPA) COSZ$2COS 2t (4.3-31)

where T is the polarization tilt angle measured from the horizontal.

Note that the formulas (4.3-30) and (4.3-31) contain a frequency

dependence of 20 log f. This disagrees with the provisional formula

of the CCIR (Equation 4.3-27)/ which has a 30 lo9 f frequency

dependence. There is little discrepancy between the predictions
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given by the two formulas for frequencies in the vicinity of 12 GHz,

but the above formulas give better agreement with data at 19 and 28

GHz .

4~3.3  S t a t i s t i c a l  C h a r a c t e r i s t i c s  o f  Rain D e p o l a r i z a t i o n

Two models have been proposed for predicting the statistical

characteristics of rain depolarization. Chu (1980) determined

functional dependencies of cross polarization on frequency,

polarization and elevation angle, and presented techniques for

finding depolarization statistics on the basis of rain rate or rain

attenuation statistics. Kanellopoulos and Clarke (1981) developed a

method of predicting long-term rain depolarization statistics on

short terrestrial links. The distribution of cross-polarization

isolation, in decibels, turns out to be approximately Gaussian. An

assumption of uniform rain rate restricts the model to short paths,

but an extension to the more general case of varying rain rate along

the path is in progress. The general method should also be

applicable to satellite paths.

Experimental depolarization data on satellite paths appears to

be approximately normally distributed. Combining this with the

observed log-normal distribution of rain attenuation, a

probabilistic model of depolarization in combination with

attenuation has been proposed (Wallace - 1981). In this model the

joint probability density of XPD, in decibels, and the logarithm of

rain attenuation, in decibels, is approximated by a bivariate

Gaussian density. This description agrees fairly well with

experimental results. The proposed model has been used in the

analysis of single-site and diversity system availability.

4.3.4 Experimental Depolarization Data

The most extensive experimental investigations of depolarization

above 10 GHz to date have been performed at Virginia Polytechnic

Institute and State University (VPI & SU) at Blacksburg (Bostian and

Dent - 1979) (Stutzman et.al. - 1983), the University of Texas (UT)
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at Austin (Vogel - 1978), and the Bell Telephone Laboratories (BTL)
in Holmdel, and Crawford Hill, N.J. (Arnold, et al - 1979). The
signal sources for depolarization measurements conducted at these

facilities have been beacons on the following spacecraft.

ATS-6 20 GHz, 30 GHz, LP

CTS 11.7 GHz, RHCP

COMSTAR 19.04 GHz, Vert. & Horiz. LP

COMSTAR 28.56 GHz, Vert. LP

SIRIO 11.6 GHz, RHCP

Four COMSTAR spacecraft, D-1 through D-4, have been used.

In the experiments, the signal levels in the copolarized  and

cross polarized channels were measured, either continuously or

during periods of rain. The measurement records were typically used
to generate XPD and CPA statistics and plots of XPD versu$ CPA.

Some results of these experiments are presented in section 6.7.2.

Both the VPI and SU and the UT data bases have been processed to

give XPD vs CPA on an instantaneous basis, and on a statistical

basis. In the former case, XPD values that were observed at the

same time as the corresponding CPA value are plotted. In the latter
case, the XPD value that was not exceeded for a particular

percentage of time is plotted against the CPA value that was

exceeded for the same time percentage. An instantaneous XPD vs CPA

plot was prepared for each month, and a curve of the form XPD = ~ -

~ log CPA was fitted to it. Table 6.7-1 shows the ~ and ~

parameters giving the best fit for each monthly plot for the 1978
VPI and SU data. The parameter R, which indicates how well the data

fits the analytical curve (R2 = 1 for perfect fit), is given for each

case. The best-fit ; and ~ values are quite variable month-to-

month, and some months have very low R2 values. The UT data gave

similar results. This indicates that the formula ~ probably not.
v~ry reliable for predicting XPD versus CPA on an astananeous

basis. Statistical plots, on the other hand, generally show very

. .

-,
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good fit to the formula. The VPI and SU CTS data (11.7 GHz) for the

1978 calendar year yielded ~ - 41 dB and ~ - 23.2 with R2 = 0.95 when

all data for CPA K 5dB is ignored. The UT data, covering about 18
.

months, gave ~ = 41 dB~ b = 20.6 with R2 = O 99.

Figure 6.7-3 shows how the experimentally determined values of a

and b for various frequencies and polarizations compare with the

theoretically determined values from the formulas given previously.

The theoretical predictions in general overestimate the depolarizing

effects of the rain.

In the BTL experiment, co- and crosspolarized signal phase as

well as amplitude was measured. This allowed the investigators to

calculate XPD for arbitrary polarization states by vector

manipulations. The beacon signal used, from a COMSTAR satellite,

was linear polarized and oriented at about 21° from the local

horizontal. Through the data conversion process, XPD versus CPA was

determined on a statistical basis for linear polarization oriented

0°, 45° and 90° from horizontal, and RHCP. Figure 4.3-5 shows the

median 19 GHz curves for the true polarizations (21° from vertical

and horizontal) and for vertical, horizontal and 45°. The experiment

confirmed the theoretical result that maximum XPD occurs at 45°.

Also, the XPD values calculated for RHCP were virtually identical to

those at 45°, which is predicted by theory. The figure shows that

the 21° curves fall between the 45° and the vertical/horizontal

curves, and that XPD for horizontal polarization is greater than for

vertical polarization. Both of these results aqree with physical

reasoninq o A general aqreement with the XPD = & - ~ log CPA

relation is evident for the lower three curves, in that they tend to

lie near a straight line on the semilogarithmic  plot. The CCIR

approximation (4.3-27) is shown on the plot for the tilt angles 21°

and 45°. In this case, the CCIR approximation appears to

underestimate the depolarization.
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4.3.5 Phase of CrossPolarized Siqnal

Techniques have been developed for compensating for

depolarization in dual-polarized satellite systems. They involve

canceling the crosstalk in one channel by inserting a properly

levelled and phased sample of the opposite channel’s signal. The

signal sample used for canceling must be exactly 180° out of phase

from the crosspolarized  signal for the technique to work. Its

effectiveness dependsr therefore on how well the control system can

determine and track the phase of the crosspolarized signal. This is

a function of variability and rate of change of that phase.

Estimating the performance of crosstalk cancellation systems is

one motivation for investigating crosspolarized signal phase.

Another reason is that the signal phase is sensitive to certain

properties of the rain medium (e.g. canting angle), and its

measurement can aid in modelling the propagation properties of rain

phenomena.

Overstreet and Bostian (1978) at VPI and SU derived a

theoretical description of the phase between the copolarized  and

crosspolarized signals when rain depolarization is present. They

assumed identically oriented raindrops, canted at an angle (1 with

respect to a copolarized reference direction~ having known

differential attenuation and phase and a known effective path

length. Using Chu’s differential attenuation and phase values for

the frequencies and elevation angles of the CTS and COMSTAR D-2

beacons, they predicted the phase as a function of 8 and rain rate,

then found phase versus the XPD value for the same rain rate. The

path lengths used were derived from attenuation statistics for those

beacons at the VPI and SU station. For linearly polarized signals

at 11 and 28 GHz, it was found that the phase was a fairly weak

function of XPD and t , typically remaining with a 45° sector for XPD

values down to 15 dB over the expected range of e. For circular

polarization, it was found that the phase difference Ac is given by

4 - 4 3



A= = A2e + At((l = 45°) ( 4 . 3 - 3 0 )

where At is the phase difference for LP waves, and the sign of the

first term depends on whether RHCP or LHCP is copolarized. The LP

phase difference at 6 = 45° is only weakly dependent on XPD so the 2e

term predominates in AC.

Experimental data from the CP CTS beacon at 28.56 GHz generally

confirmed the theoretical expectations. The phase difference of the

LP signal normally remained in a 20-30° range during a rain

depolarization event, whereas the CP signal phase difference varied

widely during the course of a rain event. The phase versus XPD

changes generally followed a characteristic sequence during

convective storms. This indicated the changes in the nature of the

depolarizing medium, primarily in predominant canting angle of the

raindrops present, through the passage of the storm cell.

The experimental evidence suggests that crosstalk cancellation

schemes would be more effective using LP than CP waves. The phase

of the crosspolarized signal, which must be estimated by the

cancellation system, is much less variable with linear polarization.

In fact, setting the phase of the cancellation signal to a constant

value would give a degree of effectiveness, while eliminating the

need for a complex phase shifter control system.

4.3.6 Rate of Chanqe of Depolarization

To more fully characterize depolarization, some quantitative

description of the rate of change of the amplitude and phase of the

crosspolarized  signal would be desirable. This information would

assist us in designing adaptive controls for crosstalk cancellation

systems, and may also provide further insight into the nature of the

meteorological process responsible for depolarization. However,

there has apparently been little research effort expended to this

end. Further experimental work, or further analysis of existing

data bases, is needed in this area.

\
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4 .3 .7  Rain Depolarization D e p e n d e n c e  o n  E l e v a t i o n  Anqle a n d

Frequency

Knowledge of the dependence of crosspolarization discrimination

on elevation angle and frequency is quite valuable because it allows

us to extend the usefulness of time-consuming and costly

measurements. Unfortunately, the present limited body of

experimental evidence does not overwhelmingly support the

theoretical scaling relations, so they must be used with caution.

The expression obtained earlier for XPD (eq. 4.3-16),

XPD = -20  log [~ m8LlAk’1  cos2&  sin 2~]
( 4 . 3 - 3 1 )

can be rewritten to explicitly show the elevation angle and

frequency dependencies. For the CP case, corresponding to the

minimum XPD, we have ~ = 45° which gives

XPD = -2010g(Lcos2&)

-2010glAk’l

-2010g(mo/2)

Using the empirical relations (Nowland, et al-1977):

L = [7.41 x 10-s RO.T~ + (0,232 - 1.8x 10-’$R) sin &]-l

lAkfl E c(f) R d(f)

( 4 . 3 . - 3 2 )

( 4 . 3 - 3 3 )

It is apparent that the first term in the XPD expression is a

function of rain rate and elevation angle only, and the second term

is a function of rain rate and frequency only. These terms are

plotted in Figure 4.3-6. The last term can be considered constant,

though it may also be a function of rain rate. For me = 0.8, the last

term is 8 dB.
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Another depiction of the frequency dependence of XPD is shown in

Figure 4.3-7. It shows the predicted XPD vs CPA relations for fixed

frequencies and elevation angle. It is clear that, for any given

rain rate, both CPA and XPD get worse as frequency increases.

However, for a given value of CPA, XPD improves with frequency.

4.4 ICE DEPOLARIZATION

The second major cause of depolarization on Earth-space paths,

besides rain, is the presence of ice crystals in clouds at high

altitudes. Ice crystal depolarization is different from rain

depolarization in that it is not accompanied by appreciable

copolarized attenuation. This is because the depolarization is

caused primarily by differential phase shifts, rather than

differential attenuation, which is responsible for rain

depolarization. Another distinguishing characteristic is that the

amplitude and phase of the crosspolarized signal often undergo

abrupt, coincident changes with large excursions.

4.4.1 Meteorological Presence of Ice

Clouds present above the freezing level consist, completely or

in part, of ice crystals. Cirrus clouds, and the “anvil” that forms
at the top of mature thunderstorms are all ice, and the upper parts

of cumulonimbus clouds are predominately ice. The crystals that are

present have one of two shapes determined by the temperature at the

time of formation. Very cold temperatures, below about -25°C, favor
the formation of needle-shaped crystals. Flat, plate-like crystals
form in a moderately cold environment (-9° to -25°C). The dimensions

of the crystals vary between about 0.1 and 1 mm.

Ice crystals form on dust particle nuclei in the atmosphere.

The relative abundance of dust particles has been hypothesized as

the reason for differences observed in ice depolarization at

different locations. In maritime regions, the air contains

relatively few dust particles compared with continental areas. As a

result of this, maritime air tends to have fewer, but larger ice
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particles than continental air under similar conditions. It is

believed that the presence of larger crystals accounts for the

generally higher values of XPD observed in maritime versus inland
locations (i.e., BTL versus VPI & SU).

Like raindrops, ice crystals are non-symmetrical and they have a

dielectric constant much different from air. These are two of the

necessary conditions for depolarization. A third condition, a

preferred particle alignment, is also required. Oblate raindrops

are aligned by aerodynamic forces~ and their preferred alignment

direction is affected by the prevailing winds. Aerodynamics also

plays a role in aligning ice particles, but it is believed
electrostatic forces also play a large part. This belief is

supported by many observations during thunderstorms of rapid XPD

changes coinciding with lightning flashes. This coincidence may be

explained by the following: Electric fields present in regions

between oppositely-charqed  clouds exert torques on the highly non-
symmetrical ice crystals. When the field is sufficiently strong,

these torques become significant in comparison with the turbulent

aerodynamic forcesc resulting in an average alignment of the

“needle” crystal axes and the “plate” crystal planes alon9 the

direction of”the field lines. When a lightning discharge takes

place between the clouds, charqes are equalized and the electric

field intensity drops. Aeroydnamic forces then predominate~  and the

crystals quickly lose their preference for a particular direction of

orientation (Bostian and Allnut - 1979).

4.4.2 Model for Ice Depolarization

Propagation through a region containing ice crystals can be

analyzed in a manner analogous to that applied to rain. In the case

of ice, the crystals are modelled as highly eccentric prolate

spheroids (“needle” crystals) or oblate spheroids (“plate”

crystals). Haworth, Watson and McEwan (1977) have performed this

analysis. They assumed that due to aerodynamic forces, the “plate”

crystals were oriented horizontally and the axes of the “needle”

crystals stayed in the horizontal plane. Under this assumption, an

4 - 4 9
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electrostatic field has no effect on “plates”, and aligns the

“needles” along the horizontal component of the field. Figure 4.4-1

shows the magnitude of the predicted ice XPD. The “needle’’-produced

XPD varies with ~, the average orientation angle of the crystal axes

measured in the horizontal plane. The parameter a is a measure of

the degree of alignment of the crystal axes. When the axes are

uniformly distributed in all directions~ a = Or and when all

crystals are oriented in the same direction, a = 1.

The phase of the crosspolarized signal, as predicted by the

model, undergoes an abrupt change of 180° as @ passes through the

values corresponding to the XPD peaks, (crosspolarized  signal nulls).

These are at 80° and 130° in the figure. When a is below some

critical value, however, (falling between 0.5 and 1.0 for the

example shown) the double null and accompanying phase jump don’t

occur. This phase reversal phenomenon has been observed at the time

of lightning flashes in thunderstorms (see Figure 6.7-8) and is
accompanied}y  a jump in XPD amplitude. Bearing the ~arlier

discussion in mind, we would expect changes in a and $ to accompany

lighthing discharges. The same behavior has also been detected

during the passage of non-electrically-active clouds (Shutie, et al-

1978) . This implies that a particular mechanism, probably wind

shear, is responsible for crystal alignment, besides electrostatic

fields.
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